Superconducting domes and Lifshitz transitions in strontium titanate

SrTiO₃:The most dilute superonductor

Superconductivity at optimal doping

- The specific heat jump is slightly below the BCS weak-coupling value.
- γ_N=1.55 mJ/ K²mol, (larger than copper with hundred times less électrons). The lowest band has a mass as large as m*=3.5m_e.
- Bulk T_c is well below zero-resistive T_c.

At optimal doping, it is a s-wave superconductor

Nodeless gap!

Controlled disorder has no effect on T_c!

Superfluid density has a dome-like dependence

H_{c1} measured at different densities!

Two distinct superconductong domes

Fermiology: experiment and theory

Limits of the rigid band approximation (unpublished) The evolution of the Fermi surface near the Lifshitz transition is not identical in $SrTiO_{3-\delta}$ and in $SrTi_{1-x}Nb_xO_3$.

—

Nb-doped STO (1.6 10¹⁸ cm⁻³) Made in Harold Hwang's lab, Stanford

Doping by oxygen vacancies and by Nb Substitution : superconductivity

The lower Fermi radius is larger with Nb susbtitution

- This is a 'horizontal' gap. It may imply a vertical gap.
- Absence of superconductivity in Nb-doped STO is concomittant with a larger interband gap!

PHYSICAL REVIEW B **94**, 035111 (2016)

Nonmonotonic anisotropy in charge conduction induced by antiferrodistortive transition in metallic SrTiO₃

Qian Tao,^{1,2} Bastien Loret,¹ Bin Xu,^{3,4} Xiaojun Yang,^{1,2} Carl Willem Rischau,¹ Xiao Lin,¹ Benoît Fauqué,¹ Matthieu J. Verstraete,³ and Kamran Behnia^{1,*}

The doping dependence of the onset of the tetragonal transition is also strongly dopant-dependent.

PHYSICAL REVIEW B 84, 205111 (2011)

Common Fermi-liquid origin of T^2 resistivity and superconductivity in *n*-type SrTiO₃

D. van der Marel,¹ J. L. M. van Mechelen,¹ and I. I. Mazin² ¹Département de Physique de la Matière Condensée, Université de Genève, CH-1211 Genève 4, Switzerland $n (cm^{-3})$ ²Center for Computational Materials Science, Naval Research Laboratory, Washington, DC, USA (Received 14 September 2011; published 10 November 2011) 10^{18} 10^{20} 100 100 80 80 Fermi energy (meV) (meV) The most significant differences between the results pre-60 60 sented here and Matheiss' results⁴⁰ are the much smaller crystal-field parameter D = 2.2 meV obtained here as compared to D = -33 meV obtained from a tight-binding fit to 40Matheiss' bands, and the fact that the sign is opposite. The resulting Fermi surface of the lowest band is therefore quite X_{c2} different; in the present calculation, it is in fact similar to 20 20 Fermi surface of the cubic phase shown in Fig. 4 (taking 2% doping), and has six arms extending along [100], [010], and [001] directions. The arms along the z axis are slightly longer than those along x and y, but on the scale of Fig. 4 [110] [100] -[101] this is not a perceptible difference. In contrast, Mattheiss's 10-2 10-3 10^{-4} 0 0 2 Fermi surfaces (see Fig. 6 of Ref. 40) have four arms along [100] and [010] and none along [001]. Gregory *et al.*⁴¹ studied k a k a х

Summary

- The superconducting dome in strontium titanate extends over three orders of magnitude in concentration (10⁻⁵<x<0.02).
- Only oxygen reduced samples are superconducting below x<0.001.
- The the Fermi surface in oxygen-reduced and Nb-doped samples differ near the Lifshitz transition. Does dilute superconductivity requires a small interband gap?
- Superconductivity and the Fermi surface evolution in PbTe and in SnTe are also dopant dependent (Ian Fisher and co-workers). The rigid band approximation is not rigorously true.

Other collaborators

Yann Gallais Paris-Diderot	Joachim Hemberger	Thomas Lorenz	Valentina Martelli	Harold Hwang Stanford
	Cologne	Cologne	Rio de Janeiro	

Hyeok Yoon

Collignon *et al.*

Annual Review of Condensed Matter Physics, 2019

Collignon *et al.*

Annual Review of Condensed Matter Physics, 2019

Strong sample dependence of Tc in the dilute limit

Possible origin: uncontrolled magnetic impurities.

Surface magnetism of strontium titanate

J M D Coey, M Venkatesan and P Stamenov

School of Physics, Trinity College, Dublin 2, Ireland

E-mail: jcoey@tcd.ie

Number of magnetic scattering centers per mobile electron varies from sample to sample. **Table 1.** Chemical analysis of 3*d* impurities in (100) crystals (parts per billion).

Supplier	Fe	Со	Ni
А	226	10	337
В	5234	407	32
С	576	21	597
D	98	26	20