Interactions Between Ferroelectricity and Superconductivity in SrTiO₃

Salva Salmani-Rezaie, Timo Schumann, Luca Galletti, Kaveh Ahadi, William Strickland, and Susanne Stemmer Materials Department, University of California, Santa Barbara

MISPOCHE-2020

May 4, 2020

Phase Transitions in Doped, Strained SrTiO₃ Films

K. Ahadi et al., Sci. Adv. 5, eaawo120 (2019). R. Russel et al., Phys. Rev. Mater. 3, 091401(R) (2019).

Phase Transitions in Doped, Strained SrTiO₃ Films

Paraelectric \rightarrow Ferroelectric \rightarrow Superconducting

K. Ahadi et al., Sci. Adv. 5, eaawo120 (2019). R. Russel et al., Phys. Rev. Mater. 3, 091401(R) (2019).

UC SANTA BARBARA

- Superconducting transition temperature is enhanced by a factor of two compared to unstrained films (T_c > 600 mK)*
- Superconducting dome is unaffected
- Ferroelectric transition temperature decreases with doping concentration
- Ferroelectric and and superconducting transitions "collapse" at a similar carrier density

*See also: Tomioka et al., Nat. Comm. 10:738 (2019); Van der Marel, APS 2019; Stucky et al., Sci. Rep. 6, 37582 (2016); Herrera et al., Phys. Rev. Mater. 3, 124801 (2019); Rischau et al., Nat. Phys. 13, 643 (2017).

R:SrTiO₃

Nature of the Ferroelectric Transition

Prototype displacive/softmode phase transition?

Polar Nanodomains in the Paraelectric Phase

UC SANTA BARBARA

• Static Ti-column displacements and polar nanodomains in the paraelectric phase of strained SrTiO₃ films

- Local order, global disorder
- Coulomb interactions cause displacements already in the paraelectric phase
- Order-disorder transition
- Domains grow as temperature approaches the transition and reorient for a globally polarized phase

S. Salmani-Rezaie et al., submitted.

Polar Nanodomains in the Paraelectric Phase

Local ferroelectric order in the paraelectric phase

SrTiO₂ LSAT

S. Salmani-Rezaie et al., submitted.

Indication for a novel phase in the quantum paraelectric regime of SrTiO₃

K. Alex Müller¹, W. Berlinger^{1,†}, and E. Tosatti² Z. Phys. B – Condensed Matter 84, 277–283 (1991)

UC SANTA BARBARA

"...low-temperature $SrTiO_3$ is locally ferroelectric already at zero stress." reason: below this temperature, at least as far as structural modes (short correlation length) are concerned, the low-temperature $SrTiO_3$ is locally ferroelectric already at zero stress. Actually there is absolutely no anomaly, or jump – as noted in [22] – in the structural Ramanactive modes at the onset of stress-induced ferroelectricity. However, the stress-free crystal is clearly not globally and macroscopically ferroelectric, which implies that, if present, the ferroelectric order parameter must fluctuate in space, averaging out to zero.

SrTiO

Polar Superconductor + Spin Orbit Coupling

- Breaking of inversion symmetry makes spin-orbit coupling relevant
- Singlet–triplet mixing expected, but details matter
- Topological superconductivity and unconventional pairing often occur together*
- Proposals of polar fluctuations mediating odd-parity/topological and unconventional SC

 PHYSICAL REVIEW B 93, 134512 (2016)

 Topological superconducting phases from inversion symmetry breaking order in spin-orbit-coupled systems

 Yuxuan Wang,¹ Gil Young Cho,² Taylor L. Hughes,¹ and Eduardo Fradkin¹

 PRL 115, 207002 (2015)
 PHYSICAL REVIEW LETTERS

 13 NOVEMBER 2015

 Odd-Parity Superconductivity in the Vicinity of Inversion Symmetry Breaking in Spin-Orbit-Coupled Systems

Vladyslav Kozii and Liang Fu

• Experimental signatures?

* For LAO/STO interfaces, see Scheurer et al., Nat. Commun. 6, 6005 (2015).

UC SANTA BARBARA

7

Experimental Signatures of Odd-Parity SC

Surface depletion of ~ 150 nm thin films causes rapid drop in $T_{\rm c}$ at low doping

R:SrTiO₃ LSAT

- Critical fields above the Pauli limit seen in most films
- Usually taken as a strong indicator of odd-parity SC
- For odd-parity states, there is no suppression of superconductivity if the field is along with the direction of Cooper-pair spin
- Other explanations possible, e.g. multiband SC

Sample D is has an interfacial layer Samples B and D are **partially strain-relaxed**

T. Schumann, L. Galletti et al., Phys. Rev. B 101, 100503(R) (2020)

9

С

Experimental Signatures of Odd-Parity SC

Summary and Open Questions

- Signatures of odd-parity SC in doped, polar SrTiO₃ films
 - Need to be better understand role of spatial nonuniformity, polar fluctuations, 2D, ...
- Suppression of polar nanodomains with doping in the paraelectric phase is key to suppressing the ferroelectric transition
- This increases the superconducting transition temperature, until disorder destroys both